

RE 29075

Edition: 2024-03 Replaces: 08.13

Proportional directional control valves, pilot-operated, with electrical position feedback and integrated electronics (OBE)

Type 4WRKE

- ▶ Size 10 ... 35
- ► Component series 3X
- Maximum operating pressure 350 bar
- ► Maximum flow 3000 l/min

Features

- ▶ Operation by means of proportional solenoids
- ► Control of flow direction and size
- ► For subplate mounting
- ▶ Porting pattern according to ISO 4401
- ► Electrical position feedback
- ► Spring-centered main control spool
- ▶ Pilot control by means of proportional directional valve
- ► Main stage with position control

Contents

Features	1
Ordering code	2, 3
Symbols	3, 4
Function, section	5, 6
Technical data	6 10
Block diagram/controller function block	11, 12
Electrical connections and assignment	13
Characteristic curves	14 19
Dimensions	20 26
Accessories	27
Project planning information	27
Further information	28

Ordering code

01	02	03	04	05	06	07		08		09	10	11	12		13	14	15	16	
4	WRK	E	1				_	ЗХ	1	6E	G24		K31	1		D3		*	
÷	1001111							10/1			0.2.					100			
01	4 main	ports																	4
)2	Proport	ional	directi	onal c	ontrol	valve	s, pilo	t-opei	ated										WRK
)3	With int	egrate	ed elec	ctronic	s (OB	E)													E
)4	Size 10																		10
	Size 16																		16
	Size 25																		25
	Size 27																		27
	Size 32																		32
	Size 35																		35
)5	Symbol	s; pos	ssible v	ersior/	n see p	age 3													
	d flow																		
)6	- Size 1		V 6V	ol F	E1_ \^/	6- \\/	2- 225	E /	well	20 1/25-	ion "! "\								25
	25 l/mir		y symr	ool E,	EI-, VV	6-, WE	s- and	EA as	well	as vers	ion "L")								
	50 l/mir																		50
	100 l/m																		100
	- Size 1																		150
	150 l/m																		150
	220 l/m																		220
	- Size 2																		
	220 l/m																		220
	350 l/m																		350
	- Size 2																		
	500 l/m																		500
	- Size 3																		
	400 l/m																		400
	600 l/m	in																	600
	- Size 3																		
	1000 l/ı	min																	1000
low	characte	eristic	:																
07	Linear																		L
	Linear v	vith fi	ne con	itrol ra	ange														Р
08	Compor	nent s	eries 3	30 3	9 (30	39:	unch	anged	instal	lation	and cor	necti	on dime	nsion	s)				3X
09	Proport	ional	soleno	id wit	h deta	chabl	e coil												6E
10	Direct v	oltage	e 24 V																G24
ilot	oil flow																		
11	Externa	l pilot	oil su	pply, e	externa	al pilo	t oil r	eturn											No code
	Pilot oil																		E
	Internal																		ET
	Externa																		Т
l ec 12	Connec			S + DF) 2000	rding	to EN	17520	11-204	<u> </u>									K31 1)
14	Connec	toi I-	טופ (נ	, r F E	, accor	unig	UEN	11320	, 1-004	r									K31 "

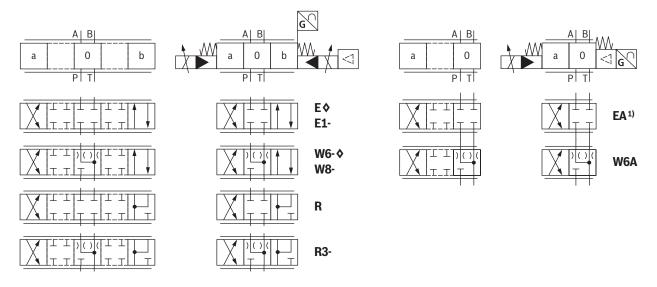
Proportional directional control valves | 4WRKE 3/28

Ordering code

1	WRK			г			2	,	65	C24		K31	,		D3	10	*
01	02	03	04	05	06	07	08		09	10	11	12		13	14	15	16

Interfaces of the control electronics

13	Command value input ±10 V; actual value output ±10 V							
	Command value input 4 20 mA; actual value output 4 20 mA							
			-					
14	With pressure reducing valve type ZDR 6 DP0-4X/40YM-W80 (permanently set)	D3						


Seal material (observe compatibility of seals with hydraulic fluid used, see page 8)

15	NBR seals	М	\$
	FKM seals	V	
16	Further details in the plain text	*	

- 1) Mating connectors can be ordered separately, see page 27.
- 2) See "Project planning information" page 27

Notice: ♦ = Preferred type

Symbols

With symbols E1- and W8-:

 $P \rightarrow A: \mathbf{q}V \text{ max}$ $B \rightarrow T: \mathbf{q}V/2$ $P \rightarrow B: \mathbf{q}V/2$ $A \rightarrow T: \mathbf{q}V \text{ max}$

With symbols R and R3-:

 $P \rightarrow A: qV \text{ max}$ $B \rightarrow P: qV/2$ $P \rightarrow B: qV/2$ $A \rightarrow T: qV \text{ max}$

 Example: Symbol E with spool position "a" ordering code ..EA..

Motice:

- Representation according to ISO 1219-1. Hydraulic interim positions are shown by dashes.
- With symbols W6-, W8- and R3-, there is a connection from A→T and B→T with approx. 2% of the relevant nominal cross-section in zero position.

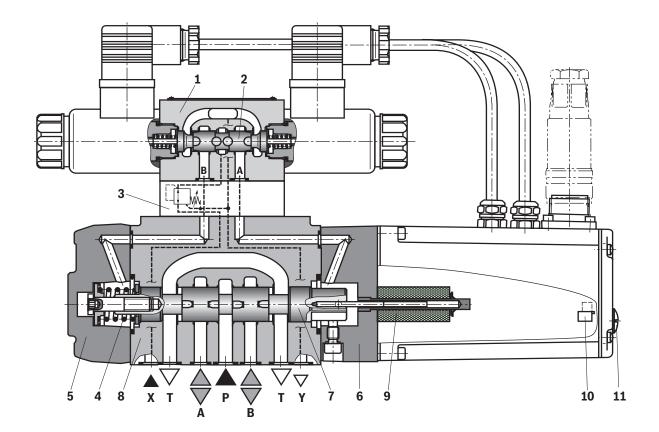
Symbols

Version	Simple	Detailed
"no code"	A B W A C I	1 P T
"E"	A B G G Y P T	
"ET"	A B G W A A D D P T	
"T"	A B W A C D D W A C D D D D D D D D D D D D D D D D D D	

Motice:

Representation according to ISO 1219-1.

- 1 Pilot control valve type 4WRAP 6...
- 2 Main valve
- 3 Pressure reducing valve type ZDR 6 DP0-4X/40YM-W80
- 4 Integrated electronics (OBE)


Proportional directional control valves | 4WRKE

Function, section

Valves of type 4WRKE are 2-stage proportional directional control valves. They control the flow direction and size. The main stage is position-controlled so that the control spool position is independent from flow forces also in the case of bigger flows.

The valves mainly consist of the pilot control valve (1), the housing (8), the main control spool (7), the covers (5 and 6), the centering spring (4), the inductive position transducer (9) and the pressure reducing valve (3). If there is no input signal, the main control spool (7) will be kept in the central position by the centering spring (4). Both control chambers in the covers (5 and 6) are connected to port T via the valve control spool (2). The main control spool (7) is connected to suited control electronics via the inductive position transducer (9). Both the position change of the main control spool (7) and the change of the command value at the junction summing of the amplifier create a voltage difference.

During the comparison of command value and actual value, a possible control deviation is determined via the electronics and the proportional solenoid of the pilot control valve (1) is supplied with current. The current induces a force in the solenoid which operates the control spool via a plunger in a row. The flow which is activated via the control cross-sections leads to an adjustment of the main control spool. The main control spool (7) with the core of the inductive position transducer (9) attached to it is displaced until the actual value corresponds to the command value. In controlled state, the main control spool (7) is force-balanced and kept in this controlled position. The control spool stroke and the control opening change proportionally to the command value. The control electronics is integrated in the valve. By adjusting the valve and electronics, the deviation in series production of the devices is kept low.

RE 29075, Edition: 2024-03, Bosch Rexroth AG

5/28

Function, section

M Notice:

- ► The tank lines must not be allowed to run empty; with corresponding installation conditions, a preload valve (preload pressure approx. 2 bar) must be installed.
- ► The zero point adjustment at "zero point main stage" (10) is made at the factory and can be adjusted in a range of ± 30% of the nominal stroke via a potentiometer in the control electronics. Access with the integrated control electronics by removing a front-side plug screw (11) on the cover housing.
- When the pilot control valve or the control electronics are exchanged, they are to be re-adjusted.
 All adjustments may be implemented by instructed experts only.
- Changes in the zero point may result in damage to the system and may only be implemented by instructed specialists.

Technical data

(Please consult us for applications outside these values!)

General						1			
Size	NG	10	16	25	27	32	35		
Type of connection		Subplate m	nounting		,	,			
Porting pattern		ISO 4401- 05-05-0-05	ISO 4401- 07-07-0-05	ISO 4401- 08-08-0-05	ISO 4401- 08-08-0-05		ISO 4401- 10-09-0-05		
Weight	kg	9	11	18	19.5	37.5	75		
Installation position		Any							
Ambient temperature range	°C	C -20 +50							
Storage temperature range (with UV protection) °C +5 +40									
Maximum storage time	Years	1 (if the storage conditions are observed, refer to the operating instructions 07600-B)							
Maximum relative humidity (no condensation)	%	95							
Protection class according to EN 60529		IP65 (if suitable and correctly mounted mating connectors are used)							
Maximum surface temperature	°C	150							
MTTF _D values according to EN ISO 13849	Years	75 (for further details see data sheet 08012)							
Sine test according to EN 60068-2-6		10 2000 Hz / maximum of 10 g / 10 cycles / 3 axes							
Noise test according to EN 60068-2-64		20 2000 Hz / 10 g _{RMS} / 30 g peak / 24 h / 3 axes							
Transport shock according to EN 60068-2-27		15 g / 11 m	ns / 3 shock	s / 3 axes					
Conformity ► RoHS Directive		2011/65/EU ¹⁾							

¹⁾ The product fulfills the substance requirements of the RoHS Directive 2011/65/EU:

7/28

Proportional directional control valves | 4WRKE

Technical data

(Please consult us for applications outside these values!)

Hydraulic										
Size			NG	10	16	25	27	32	35	
Maximum operating	► Ports A, B, P - Pilot control valve	Pilot oil supply	bar	25 350						
pressure	- Main valve		bar	315	350	350	250	350	350	
	▶ Port T	External pilot oil supply	bar	315	250	250	210	250	250	
		Internal pilot oil supply	bar	Static < 10) (pilot cor	itrol valve)				
	► Port Y		bar	Static < 10) (pilot cor	trol valve)				
Hydraulic fluid				See table	page 8					
Hydraulic fluid t	°C	-20 +80								
Viscosity range		► Recommended	mm²/s	30 45						
		► Maximum admissible	mm²/s	20 380						
Maximum admis	<u> </u>	▶ Pilot control valve		Class 17/	15/12 ²⁾					
contamination of cleanliness class ISO 4406 (c)	of the hydraulic fluid; s according to	► Main valve		Class 20/18/15 ²⁾						
Nominal flow (⊿	p = 5 bar per control edg	ge; ±10%)		25 50 100	150 220	220 350	500	400 600	1000	
Maximum flow			l/min	170	460	870	1000	1600	3000	
Maximum	► Symbol E, E1-, R									
leakage flow	- Main valve		l/min	0.09	0.22	0.26	0.26	0.32	1.11	
(inlet pressure 100 bar)	- Main valve + pilot o	control valve	l/min	0.39	0.52	0.56	0.56	0.53	1.41	
ioo bai,	► Symbol W6-, W8-, R3	-								
	- Main valve		l/min	0.18	0.44	0.52	0.52	0.47	2.22	
	- Main valve + pilot o	control valve	l/min	0.48	0.74	0.82	0.82	0.77	2.52	
Pilot flow (at po from 0 100%;	ort X and Y with stepped in 315 bar)	input signal	l/min	7	9	12	12	14	17	

²⁾ The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components.

Technical data

(Please consult us for applications outside these values!)

Hydraulic fluid		Classification	Suitable sealing materials	Standards	Data sheet
Mineral oils	,	HL, HLP, HLPD, HVLP, HVLPD	NBR, FKM	DIN 51524	90220
Bio-degradable	► Insoluble in water	HETG	FKM	160 15000	
		HEES	FKM	ISO 15380	90221
	► Soluble in water	HEPG	FKM	ISO 15380	
Flame-resistant	▶ Water-free	HFDU (glycol base)	FKM		
		HFDU (ester base)	FKM	ISO 12922	90222
		HFDR	FKM		
	► Containing water	HFC (Fuchs: Hydrotherm 46M, Renosafe 500; Petrofer: Ultra Safe 620; Houghton: Safe 620; Union: Carbide HP5046)	NBR	ISO 12922	90223

Important information on hydraulic fluids:

- ► For further information and data on the use of other hydraulic fluids, please refer to the data sheets above or contact us.
- ► There may be limitations regarding the technical valve data (temperature, pressure range, life cycle, maintenance intervals, etc.).
- ► The ignition temperature of the hydraulic fluid used must be 50 K higher than the maximum surface temperature.
- ▶ Bio-degradable and flame-resistant containing water:

 If components with galvanic zinc coating (e.g. version "J3" or "J5") or parts containing zinc are used, small amounts of dissolved zinc may get into the hydraulic system and cause accelerated aging of the hydraulic fluid. Zinc soap may form as a chemical reaction product, which may clog filters, nozzles and solenoid valves particularly in connection with local heat input.

► Flame-resistant – containing water:

- Due to the increased cavitation tendency with HFC hydraulic fluids, the life cycle of the component may be reduced by up to 30% as compared to the use with mineral oil HLP. In order to reduce the cavitation effect, it is recommended if possible specific to the installation backing up the return flow pressure in ports T to approx. 20% of the pressure differential at the component.
- Dependent on the hydraulic fluid used, the maximum ambient and hydraulic fluid temperature must not exceed 50 °C.
 In order to reduce the heat input into the component, the command value profile is to be adjusted for proportional and high-response valves.

Static / dynamic						
Hysteresis	%	≤1				
Range of inversion	%	≤0.5				
Response sensitivity	%	≤0.5				

9/28

Proportional directional control valves | 4WRKE

Technical data

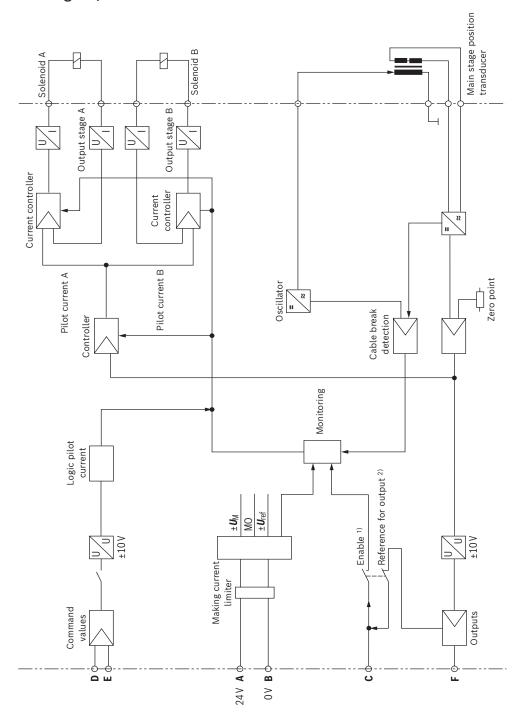
(Please consult us for applications outside these values!)

Electrical, integrated e	electronics (OBE) -	interface "A1"		
Supply voltage	► Nominal value		VDC	24
	► Minimum ► Maximum			18
				36
	► Maximum residual ripple			2.5
	► Maximum power	consumption	VA	40
	► Current	Maximum	А	<2
	consumption	Impulse current	А	3
	► Fuse protection, external			2.5 (time-lag)
Relative duty cycle time	according to VDE 0	580		S1 (continuous operation)
Functional ground and	screening			See pin assignment page 13
Maximum voltage of the	e differential inputs	against 0 V		D→B; E→B (max. 18 V)
Command value	► Measurement ra	nge	٧	±10
(differential amplifier)	► Input resistance		kΩ	>100
Actual value	► Output range		٧	±10
(test signal)	► Minimum load in	npedance	kΩ	>1

electronics (OBE) -	interface "F1"		
► Nominal value		VDC	24
► Minimum ► Maximum			19
			36
► Maximum resid	ual ripple	Vpp	2.5
► Maximum powe	r consumption	VA	40
► Current con-	Maximum	А	<2
sumption	Impulse current	А	3
► Fuse protection, external			2.5 (time-lag)
ne according to VDE ()580		S1 (continuous operation)
d screening			See pin assignment page 13
he differential inputs	against 0 V		D→B; E→B (max. 18 V)
▶ Input current ra	nge	mA	4 20
► Input resistance	2	Ω	200
► Output range		mA	4 20
► Maximum load		Ω	500
	➤ Nominal value ➤ Minimum ➤ Maximum ➤ Maximum resid ➤ Maximum powe ➤ Current consumption ➤ Fuse protection the according to VDE (document) In put current ration in the curren	Minimum Maximum Maximum residual ripple Maximum power consumption Current consumption Fuse protection, external according to VDE 0580 discreening according to VDE 0580 discreening be differential inputs against 0 V Input current range Input resistance Output range	Nominal value VDC Minimum VDC Maximum VDC Maximum residual ripple Vpp Maximum power consumption VA Current consumption Maximum A Fuse protection, external A₁ Description External A₁ Discreption Reserved Maximum A Impulse current A A₁ Discreption Maximum A₁ Impulse current A₁ A₁ Impulse current A₂ A₂ Impulse current MA A₂ Impulse current P Impulse current MA Impulse current P Impulse current MA Impulse current MA MA Impulse current MA </td

Technical data

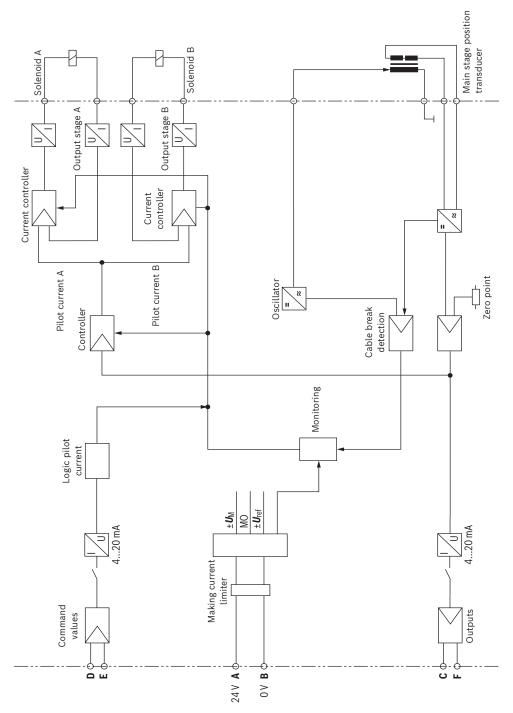
(Please consult us for applications outside these values!)


Supply voltage (U _B)	► Nominal value		VDC	24
	► Minimum ► Maximum		VDC	19
			VDC	36
	► Maximum residual ripple		Vpp	2.5
	► Maximum power consumption		VA	40
	► Current	Maximum	А	<2
	consumption	Impulse current	А	3
	► Fuse protection, external		A _T	2.5 (time-lag)
Relative duty cycle time according to VDE 0580				S1 (continuous operation)
Functional ground and screening				See pin assignment page 13
Command value	▶ Input current range		mA	±10
	► Input resistance		Ω	>100
Actual value	▶ Output range		mA	±10
(test signal)	► Maximum load		Ω	>1
Enable	► Low level range		V	-3 5
	► High level range		V	11 36
	► Maximum current consumption at high level		mA	7.25 (U _B = 24 V) 11 (U _{B max})

 $\textbf{Bosch Rexroth AG},~\mathsf{RE}~29075,~\mathsf{edition:}~2024\text{-}03$

Proportional directional control valves | 4WRKE 11/28

Block diagram/controller function block: Version "A1"


- $^{\mbox{\scriptsize 1)}}$ Only version "A5" (see "Project planning information" page 27)
- 2) Version "F1" only

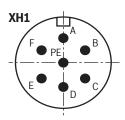
Notice:

Electrical signals provided via valve electronics (e.g. actual value) must not be used to switch off safety-relevant machine functions.

Block diagram/controller function block: Version "F1"

Motice:

Electrical signals provided via valve electronics (e.g. actual value) must not be used to switch off safety-relevant machine functions



Proportional directional control valves | 4WRKE 13/28

Electrical connections and assignment

Connector pin assignment "XH1", 6-pole + PE according to DIN 43563

Pin	Interface assignment		
	"A1"	"F1"	
Α	Supply voltage	Supply voltage	
В	GND	GND	
С	Reference potential actual value	Reference potential actual value	
D	Command value	Command value	
Е	Reference potential command value	Reference potential command value	
F	Actual value	Actual value	
PE	Functional ground (directly connected to the valve housing)		

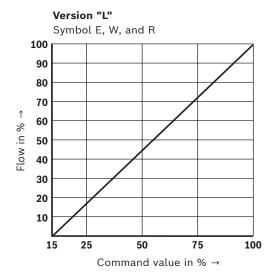
			Solenoid side		
			"a" and "b"	"a"	
Command value	Positive	0 +10 V; 12 20 mA	P→A; B→T	P→B; A→T	
	Negative	010 V; 12 4 mA	P→B; A→T	-	
Actual value	Positive	0 +10 V; 12 20 mA	P→A; B→T	P→B; A→T	
	Negative	010 V; 12 4 mA	P→B; A→T	-	
Connection	▶ Up to 20 m cable length type LiYCY 7 x 0.75 mm²				
cable	▶ Up to 40 m cable length type LiYCY 7 x 1.0 mm²				
	 ► EMC-compliant installation: Apply screening to both line ends Use metal mating connector (see page 27) ► Alternatively up to 30 m cable length admissible Apply screening on supply side Plastic mating connector (see page 27) can be used 				

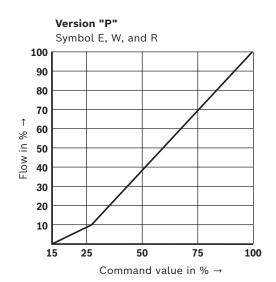
Notice:

Mating connectors, separate order, see page 27 and data sheet 08006.

Motice:

- ► As a consequence of overvoltage at the inputs, the inputs will be overridden.
- Override of the inputs may lead to uncontrolled valve movements.
- ► Reference signals not correctly connected may cause overvoltage or override.




Characteristic curves

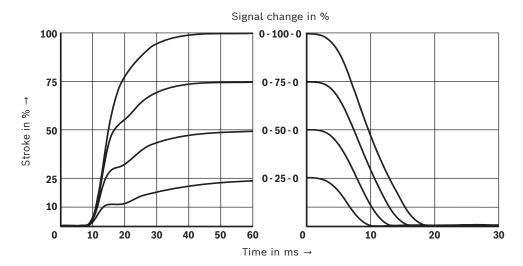
(measured with HLP46, 3_{oil} = 40±5 °C)

Flow command value function

 $(\Delta p = 10 \text{ bar } (P \rightarrow A / B \rightarrow T) \text{ or } \Delta p = 5 \text{ bar per control edge } (P \rightarrow A / A \rightarrow T))$

Motice:

Typical characteristic curves which are subject to tolerance variations.



Proportional directional control valves | 4WRKE 15/28

Characteristic curves: Size 10 (measured with HLP46, ϑ_{oil} = 40±5 °C)

Transition function with stepped electric input signals

(measured at a pilot pressure of 100 bar)

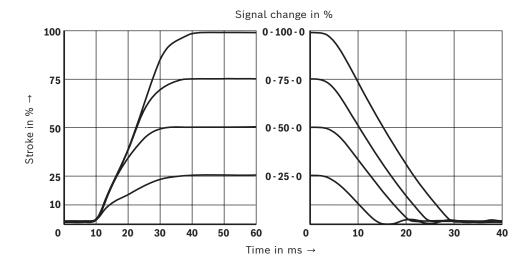
Flow/load function with maximum valve opening (tolerance ±10%)

Rated flow

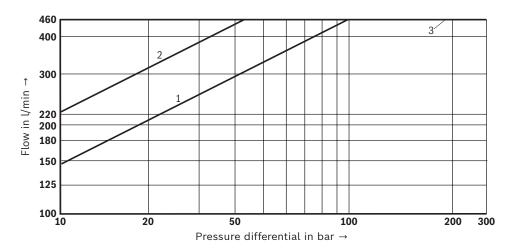
- 1 25 l/min
- **2** 50 l/min
- **3** 100 l/min
- 4 Recommended flow limitation (flow velocity 30 m/s)

Notice:

Typical characteristic curves which are subject to tolerance variations.



Characteristic curves: Size 16


(measured with HLP46, ϑ_{oil} = 40±5 °C)

Transition function with stepped electric input signals

(measured at a pilot pressure of 100 bar)

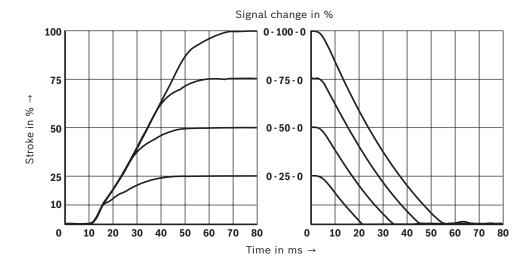
Flow/load function with maximum valve opening (tolerance ±10%)

Rated flow

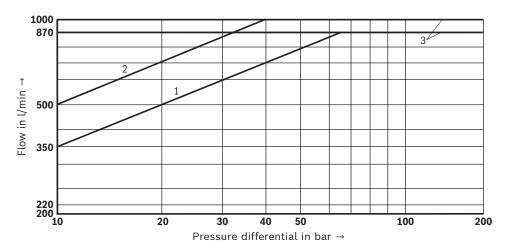
- **1** 150 l/min
- **2** 220 l/min
- 3 Recommended flow limitation (flow velocity 30 m/s)

Motice:

Typical characteristic curves which are subject to tolerance variations.



Proportional directional control valves | 4WRKE 17/28


Characteristic curves: Sizes 25 and 27 (measured with HLP46, ϑ_{oil} = 40±5 °C)

Transition function with stepped electric input signals

(measured at a pilot pressure of 100 bar)

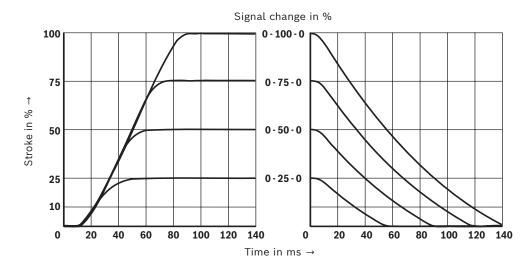
Flow/load function with maximum valve opening (tolerance ±10%)

Rated flow

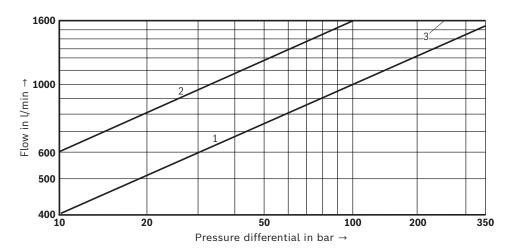
- 1 350 l/min
- **2** 500 l/min
- 3 Recommended flow limitation (flow velocity 30 m/s)

Motice:

Typical characteristic curves which are subject to tolerance variations.



Characteristic curves: Size 32


(measured with HLP46, 3_{oil} = 40±5 °C)

Transition function with stepped electric input signals

(measured at a pilot pressure of 100 bar)

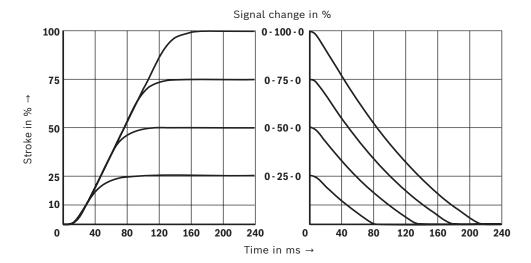
Flow/load function with maximum valve opening (tolerance ±10%)

Rated flow

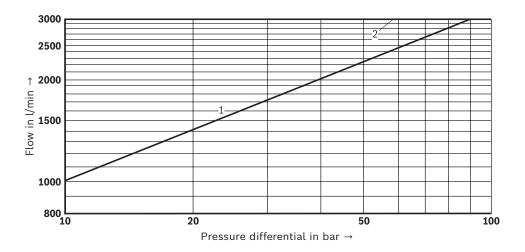
- 1 400 l/min
- **2** 600 l/min
- 3 Recommended flow limitation (flow velocity 30 m/s)

M Notice:

Typical characteristic curves which are subject to tolerance variations.



Proportional directional control valves | 4WRKE 19/28

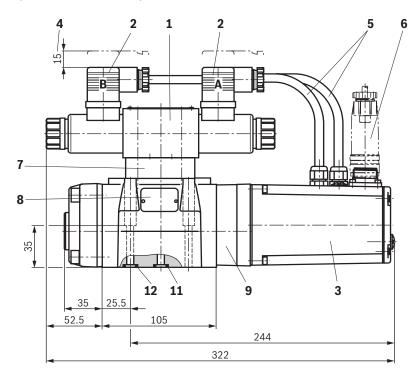

Characteristic curves: Size 35 (measured with HLP46, ϑ_{oil} = 40±5 °C)

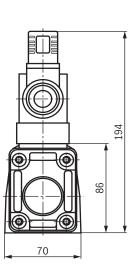
Transition function with stepped electric input signals

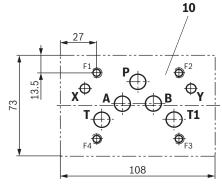
(measured at a pilot pressure of 100 bar)

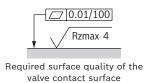
Flow/load function with maximum valve opening (tolerance ±10%)

Rated flow


- 1 1000 l/min
- 2 Recommended flow limitation (flow velocity 30 m/s)


Motice:


Typical characteristic curves which are subject to tolerance variations.

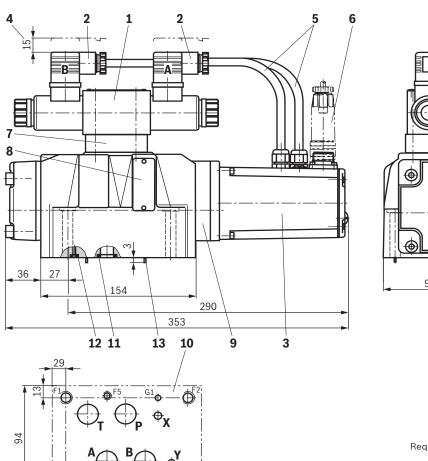


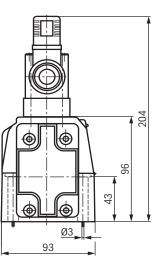
Dimensions: Size 10 (dimensions in mm)

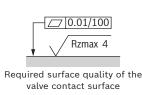
- 1 Pilot control valve
- Mating connector (A gray; B black)
- 3 Integrated electronics (OBE)
- 4 Space required for connection cable and to remove the mating connector
- 5 Wiring
- 6 Mating connector for connector "K31" (separate order, see page 27 and data sheet 08006)
- 7 Pressure reducing valve
- 8 Name plate
- 9 Main valve
- 10 Machined valve contact surface, porting pattern according to ISO 4401-05-05-0-05 (port X, Y as required)

- 11 Identical seal rings for connection A, B, P, T
- 12 Identical seal rings for connection X, Y

Valve mounting screws and subplates, see page 26.




The dimensions are nominal dimensions which are subject to



Proportional directional control valves | 4WRKE 21/28

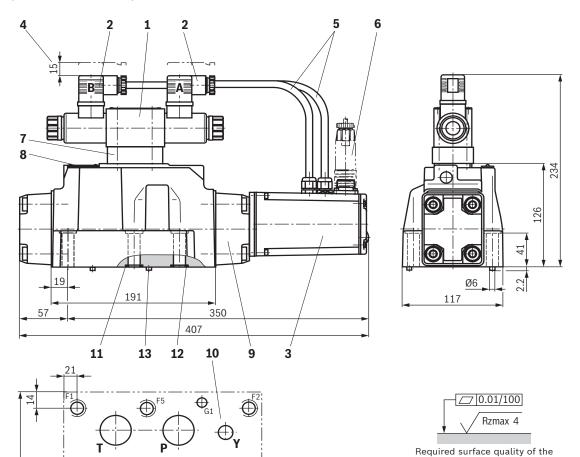
Dimensions: Size 16 (dimensions in mm)

- 1 Pilot control valve
- 2 Mating connector (A gray; B black)
- 3 Integrated electronics (OBE)
- 4 Space required for connection cable and to remove the mating connector

158

- 5 Wiring
- 6 Mating connector for connector "K31" (separate order, see page 27 and data sheet 08006)
- 7 Pressure reducing valve
- 8 Name plate
- 9 Main valve
- 10 Machined valve contact surface; porting pattern according to ISO 4401-07-07-0-05 (ports X and Y as required), deviating from the standard: Ports A, B, T and P with Ø20 mm
- 11 Identical seal rings for connection A, B, P, T

- 12 Identical seal rings for connection X, Y
- 13 Locking pin


Valve mounting screws and subplates, see page 26.

Motice:

The dimensions are nominal dimensions which are subject to tolerances.

Dimensions: Size 25 (dimensions in mm)

- 1 Pilot control valve
- 2 Mating connector (A gray; B black)
- 3 Integrated electronics (OBE)
- **4** Space required for connection cable and to remove the mating connector

195

5 Wiring

120

- 6 Mating connector for connector "K31" (separate order, see page 27 and data sheet 08006)
- 7 Pressure reducing valve
- 8 Name plate
- 9 Main valve

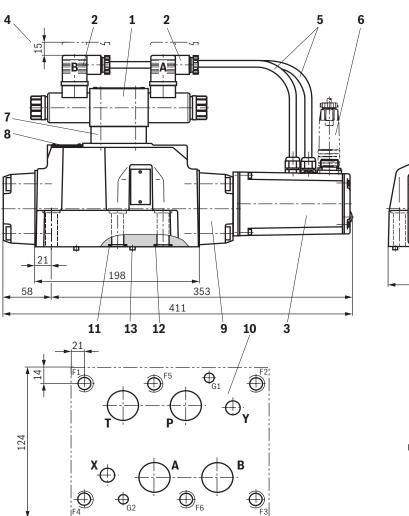
10 Machined valve contact surface, porting pattern according to

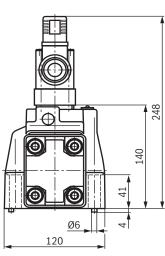
valve contact surface

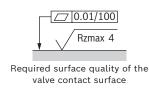
- ISO 4401-08-08-0-05 (port X, Y as required)

 11 Identical seal rings for connection A, B, P, T
- 12 Identical seal rings for connection X, Y
- 13 Locking pin

Valve mounting screws and subplates, see page 26.




The dimensions are nominal dimensions which are subject to tolerances.



Proportional directional control valves | 4WRKE 23/28

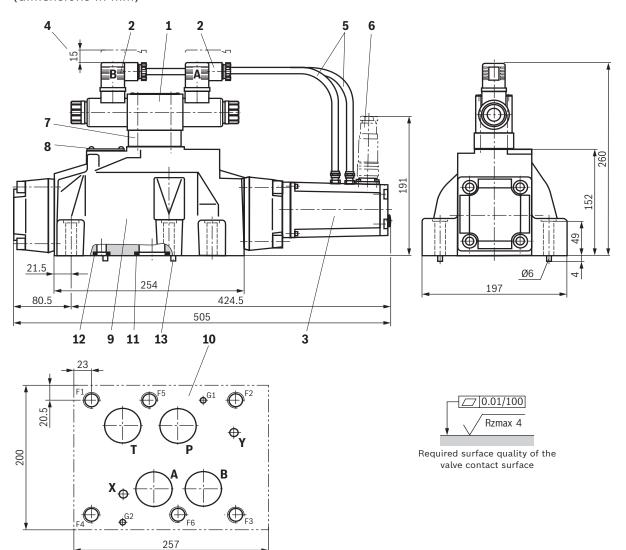
Dimensions: Size 27 (dimensions in mm)

- 1 Pilot control valve
- 2 Mating connector (A gray; B black)
- 3 Integrated electronics (OBE)
- **4** Space required for connection cable and to remove the mating connector

200

- 5 Wiring
- **6** Mating connector for connector "K31" (separate order, see page 27 and data sheet 08006)
- 7 Pressure reducing valve
- 8 Name plate
- 9 Main valve

- 10 Machined valve contact surface; porting pattern according to ISO 4401-08-08-0-05 (ports X and Y as required), deviating from the standard: Ports A, B, T and P with Ø 32 mm
- 11 Identical seal rings for connection A, B, P, T
- 12 Identical seal rings for connection X, Y
- 13 Locking pin


Valve mounting screws and subplates, see page 26.

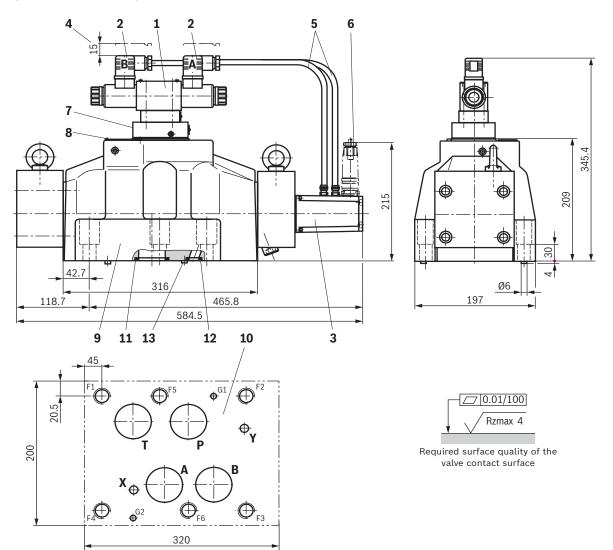
The dimensions are nominal dimensions which are subject to tolerances.

Dimensions: Size 32 (dimensions in mm)

- 1 Pilot control valve
- 2 Mating connector (A gray; B black)
- 3 Integrated electronics (OBE)
- 4 Space required for connection cable and to remove the mating connector
- 5 Wiring
- **6** Mating connector for connector "K31" (separate order, see page 27 and data sheet 08006)
- 7 Pressure reducing valve
- 8 Name plate
- 9 Main valve

- Machined valve contact surface; porting pattern according to ISO 4401-10-09-0-05 (ports X and Y as required), deviating from the standard: Ports A, B, T and P with Ø38 mm
- 11 Identical seal rings for connection A, B, P, T
- 12 Identical seal rings for connection X, Y
- 13 Locking pin

Valve mounting screws and subplates, see page 26.



The dimensions are nominal dimensions which are subject to tolerances.

Proportional directional control valves | 4WRKE 25/28

Dimensions: Size 35 (dimensions in mm)

- 1 Pilot control valve
- 2 Mating connector (A gray; B black)
- 3 Integrated electronics (OBE)
- **4** Space required for connection cable and to remove the mating connector
- 5 Wiring
- **6** Mating connector for connector "K31" (separate order, see page 27 and data sheet 08006)
- 7 Pressure reducing valve
- 8 Name plate
- 9 Main valve

- Machined valve contact surface; porting pattern according to ISO 4401-10-09-0-05 (ports X and Y as required), deviating from the standard: Ports A, B, T and P with Ø50 mm
- 11 Identical seal rings for connection A, B, P, T
- 12 Identical seal rings for connection X, Y
- 13 Locking pin

Valve mounting screws and subplates, see page 26.

The dimensions are nominal dimensions which are subject to tolerances.

Dimensions

Valve mounting screws (separate order)

Size	Quantity	Hexagon socket head cap screws	Material number		
10	4	ISO 4762 - M6 x 45 - 10.9-CM-Fe-ZnNi-5-Cn-T0-H-B	R913043777		
		Friction coefficient $\mu_{\text{total}} = 0.09 \dots 0.14$; tightening torque $M_A = 13.5 \text{ Nm } \pm 10\%$			
	or				
	4	ISO 4762 - M6 x 45 - 10.9	Not included in the Rexroth		
		Friction coefficient $\mu_{\text{total}} = 0.12 \dots 0.17$; tightening torque $M_A = 15.5 \text{ Nm } \pm 10\%$	delivery range		
16	2 ISO 4762 · M6 x 60 · 10.9-CM-Fe-ZnNi-5-Cn-T0-H-B		R913043410		
		Friction coefficient $\mu_{\text{total}} = 0.09 \dots 0.14$; tightening torque $M_A = 12.2 \text{ Nm } \pm 10\%$			
	4	ISO 4762 - M10 x 60 - 10.9-flZn/nc/480h/C	R913014770		
		Friction coefficient μ_{total} = 0.09 0.14; tightening torque M_A = 58 Nm ±20%			
	or				
	2	ISO 4762 - M6 x 60 - 10.9	Not included in the Rexroth		
		Friction coefficient $\mu_{\text{total}} = 0.12 \dots 0.17$; tightening torque $M_A = 15.5 \text{ Nm } \pm 10\%$	delivery range		
	4	ISO 4762 - M10 x 60 - 10.9			
		Friction coefficient μ_{total} = 0.12 0.17; tightening torque M_A = 75 Nm ±10%			
25, 27	6	ISO 4762 - M12 x 60 - 10.9-flZn/nc/480h/C	R913015613		
•		Friction coefficient $\mu_{\text{total}} = 0.09 \dots 0.14$; tightening torque $M_A = 100 \text{ Nm } \pm 20\%$			
	or				
	6	ISO 4762 - M12 x 60	Not included in the Rexroth		
		Friction coefficient $\mu_{\text{total}} = 0.12 \dots 0.17$; tightening torque $M_A = 100 \text{ Nm } \pm 10\%$	delivery range		
32	6	ISO 4762 - M20 x 80 - 10.9-flZn/nc/480h/C	R913008472		
		Friction coefficient $\mu_{\text{total}} = 0.09 \dots 0.14$; tightening torque $M_A = 340 \text{ Nm } \pm 20\%$			
	or				
	6	ISO 4762 - M20 x 80	Not included in the Rexroth		
		Friction coefficient $\mu_{\text{total}} = 0.12 \dots 0.17$; tightening torque $M_A = 430 \text{ Nm } \pm 10\%$	delivery range		
35	6	ISO 4762 - M20 x 60 - 10.9-flZn/nc/480h/C	R913014726		
		Friction coefficient μ_{total} = 0.09 0.14; tightening torque M_A = 465 Nm ±20%			
	or				
	6	ISO 4762 - M20 x 60 - 10.9	Not included in the Rexroth		
		Friction coefficient $\mu_{\text{total}} = 0.12 \dots 0.17$; tightening torque $M_A = 610 \text{ Nm } \pm 10\%$	delivery range		

Motice:

The tightening torque of the hexagon socket head cap screws refers to the maximum operating pressure.

Subplates (separate order) with porting pattern according to ISO 4401, see data sheet 45100.

Proportional directional control valves | 4WRKE 27/28

Accessories (separate order)

Mating connectors

Pos. 1)	Designation	Version	Short designation	Material number	ZData sheet
_	Mating connector; for valves with round connector, 6-pole + PE	Straight, metal	7PZ31M	R900223890	08006
		Straight, plastic	7PZ31K	R900021267	
		Angled, plastic	-	R900217845	-
	Cable sets; for valves with round connector, 6-pole + PE	Plastic, 3.0 m	7P Z31 BF6	R901420483	08006
		Plastic, 5.0 m		R901420491	
		Plastic, 10.0 m		R901420496	
		Plastic, 20.0 m	-	R901448068	

¹⁾ See dimensions page 20 ... 25.

Test and service devices

	Material number	Data sheet
Service case with test device for continuous control valves with integrated electronics (OBE)	R901049737	29685

Project planning information

When replacing the component series 2X by component series 3X, the electronics interface is to be defined with "A5" (enable signal at pin C).

Pin	Interface assignment
	"A5"
Α	Supply voltage
В	GND
С	Enable input
D	Command value
E	Reference potential command value
F	Actual value
PE	Functional ground (directly connected to the valve housing)

Further information

Data sheet 07600-B ► Hydraulic valves for industrial applications ► Subplates Data sheet 45100 ▶ Hydraulic fluids on mineral oil basis Data sheet 90220 Data sheet 90221 ► Environmentally compatible hydraulic fluids Flame-resistant, water-free hydraulic fluids Data sheet 90222 Data sheet 90223 ► Flame-resistant hydraulic fluids – containing water (HFAE, HFAS, HFB, HFC) Data sheet 08012 ▶ Reliability characteristics according to EN ISO 13849 Data sheet 08936 ► Hexagon socket head cap screw, metric/UNC ► General product information on hydraulic products Data sheet 07008 Data sheet 07700 ▶ Installation, commissioning and maintenance of servo valves and

► Assembly, commissioning and maintenance of hydraulic systems

► Information on available spare parts

high-response valves

Data sheet 07900